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Summary. The distance between molecular graphs G and G' is equal to the 
length of a minimum path connecting these molecular graphs in the so-called 
graph of distances. The graph of distances has vertices which are molecular 
graphs taken from the same family of isomeric graphs, and two molecular graphs 
are adjacent if there exists a prototype reaction graph which transforms one into 
the other. Distances may alternatively be determined by applying the concept of 
common supergraphs. In particular, the reaction and chemical distances between 
isomeric molecular graphs are studied. These distances allow us to simply 
incorporate the principle of minimum structural change, often used in mechanis- 
tic organic chemistry. 
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1. Introduction 

In mathematical models [1-5] of organic chemistry the concept of chemical 
distance, initially introduced by Dugundji and Ugi [1, 6], is a concept that 
reflects to some extent the very important principle of minimum structural 
change [7, 8] successfully used in organic chemistry for more than a century [9]. 
Following this principle a chemical reaction (transformation) of an educt 
molecule into a product molecule is realized in such a way that a minimum 
number of chemical bonds (and/or lone electron pairs) is canceled and formed. 
In Dugundji and Ugi's model of constitutional chemistry [1] molecules are 
represented by symmetric matrices closely related to the so-called adjacency 
matrices of graphs [10]. Let educt and product molecules be represented by the 
molecular graphs G and G' [11], and moreover, let these molecular graphs be 
represented by adjacency matrices A = (Agj) and A ' =  (A~j). Then the chemical 
distance is determined [ 1, 6] as a minimum value of LI norm of a difference of 
matrices A and A'. 

1 PiPj ]' CD(G, G') = min ~ ~ Ixij - A' 
P i~<j 
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where P --- (Pl, P2 . . . . .  Pn) represents a permutation of (1, 2 . . . . .  n). An optimal 
permutation Po corresponds to such a matching between atoms of educt and 
product molecules that the maximum common substructure is saved in the 
course of the chemical reaction. In other words, for two graphs G and G' with 
the same number of vertices, the chemical distance between them is the minimum 
cardinality of the symmetric difference of the edge sets of the 2 graphs with 
regard to all possible labellings. Thus, labellings of G and G' are sought such 
that the intersection of the edge sets has maximum cardinality. Then the distance 
between them is given by the number of edges in the two graphs which are not 
in this intersection (cf. [19-22] and Theorem 6 in this work). 

Ugi et al. [12-15] (cf. also Refs. [16-18]) have demonstrated that the 
chemical distance is a very important formal concept in that it is able to quantify 
a similarity or dissimilarity of molecules from the standpoint of the already 
mentioned principle of minimum structural change. 

An alternative look at the problem of chemical distance was made within the 
framework of the so-called graph-theoretical model of organic chemistry [5] 
independently by Johnson [19] and Balfi~ et al. [20-22]. These authors have 
defined the chemical distance by resorting to the concept of maximum common 
subgraph and also proved that this type of graph distance is a metric (in 
particular, a triangle inequality may be proved). 

Recently, Ko~a [23] (cf. also Refs. [5, 18, 22]) introduced the notion of 
reaction distance defined as the minimum number of elementary mechanistic 
(dissociation and association) steps which are necessary to transform an educt 
onto a product. This is closely related to the classical Ingold [24] concept of 
decomposition of an overall chemical reaction into a sequence of elementary 
push-pull electron flow acts. The formally correct definition o f  reaction distance 
may be done by making use of the so-called graph of distances. The vertices of 
this graph of distances are molecular graphs and two vertices, i.e. molecular 
graphs, are joined by an edge if one may be transformed into the other by 
application of a dissociation or association act. The reaction distance between 
two molecular graphs is then determined as the minimum length of a path 
connecting them. In our recent communications [18, 22] we have studied an 
interplay between chemical and reaction distances. We have demonstrated that in 
many chemically meaningful cases these distances are closely related and offer 
alternative possibilities for construction of reaction networks with acceptance of 
the principle of minimum structural change (now reformulated in principles of 
minimum chemical or reaction distance). 

The purpose o f  this communication is to demonstrate that chemical and 
reaction distances may be introduced simultaneously either via the concept of 
minimum common supergraph or via the concept of the graph of distances, and 
that both these approaches are equivalent. The presented, detailed insight to 
these distances offers theoretical tools for better understanding and interpreta- 
tion of links between them. Formally, our theoretical approach helps us to 
introduce many different distances which lie between the chemical and reaction 
distances having, unfortunately, more graph-theoretical than practical meaning. 

2. Basic concepts 

For the purposes of this communication it will be worthwhile to define the 
concept of graph [10] G as a formal structure composed of a nonempty vertex 
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set V(G) = {Vl, V2,...}, edge set E(G) ={e, ,e2 . . . .  }, and a mapping 
q~:E(G)~{0,  _+1,_+2 . . . .  }. An edge e ~ E ( G )  incident with two vertices 
Vl, vz ~ V(G) (if these vertices are identical, then the edge is called a loop) will be 
denoted {Vl, v2}. We shall postulate that the graph G does not contain multiple 
edges. The mapping ~p assigns to each edge e ~ E(G) a nonzero integer. This 
mapping is extended outside the edge set E(G) such that each edge e ¢ E(G) has 
zero image. The absolute value of q~(e) is called the multiplicity of the edge e; 
edges not belonging to the edge set E(G) are of zero multiplicity. In summary, 
the graph G is determined as an ordered triple: 

G = (V, E, ¢p), (1) 

where V = V(G) and E = E(G). 
Two types of graphs will be distinguished in our considerations: 

(1) Molecular graph - its edges are evaluated by positive integers. 

(2) Reaction graph, its edges are evaluated by positive and/or negative integers 
and the mapping tp is constrained by 

~p(e) = 0 (2) 
e E E(G) 

Similar notion of the so-called signed graph was first introduced by Harary 
[27]. 

The graphs G1 = (V1, El, ~Pl) and G2 = (V2, E2, ~P2) are called isomorphic 
(G1 ~ G2) iff there exists a 1-1 mapping (isomorphism): 

Z : V ( ~ l )  ~ V ( G 2 )  (3 )  

which preserves the adjacency of vertices and the evaluation of edges. For each 
pair of adjacent vertices vl, v2 s V(G1) the corresponding mapped pair %(Vl), 
Z(v2) ~ V(G2) is also adjacent and the evaluations of mutually assigned edges are 
identical: 

{vl, v2} ~ E(G1) ¢*" {g(vl), g(v2)} ~ E(G2) (4a) 

(Pl ({ / ) I ,  /32}) : ~02({~(/)1), ~( / )2) ) )  (4b) 

The cardinality of G is determined as the sum of edge multiplicities: 

[GI--- E l'P(e)l (5) 
e ~ E(G) 

In chemistry, two compounds are isomers if they both contain the same 
number of atoms of each kind and the same number of valence electrons 
grouped at bonds and lone pairs. For graphs a corresponding but more crude 
concept is graph isomerism which does not specify kinds of vertices correspond- 
ing to different types of atoms. Two molecular graphs G 1 and G2 are isomeric if 
they have the same number of vertices and the same cardinalities: 

I V(Gl)l  = Iv(G2)l (6a) 

IG,I--Ic=l (6b) 

The isomerism represents a relation of equivalence (which is reflexive, symmetric, 
and transitive). Hence a universe of graphs may be divided into disjoint families 
of mutually isomeric graphs. A family of molecular isomeric graphs ~pq is 
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determined by: 

~pq ~-- {G ~--- (V,  E ,  ~D); IvI--p and IGI = q} (7)  

We say that a molecular graph G belongs to family ~pq, G ~ ~pq, if this family 
contains a graph isomorphic to G. 

An inverse graph G to the graph G has the same vertex and edge sets as the 
graph G but the mapping q3 = -~p. Two graphs G1 and G2 are called symmetric 
if there exists a graph G such that G g GI and G ~ G2. In some special cases it 
may happen that graph G is isomorphic to its inverse graph, then we say that the 
graph G is selfsymmetric. 

Graph G' is called the subgraph of graph G ( G ' _  G) if V(G')~_ V(G), 
E(G') ~ E(G), and: 

Ve ~ E(G') : 0 < (p'(e) ~< ~p(e) or tp(e) ~< ~p'(e) < 0 (8) 

Also we may call G a supergraph of the graph G', G _ G'. 
A common subgraph G of two graphs GI and G2, denoted by G1 ^ G2, is 

s~multaneously isomorphic to the subgraphs G~G1 and G'2~_G2, i.e. 
G ,,~ G] ~ G~. A maximum common subgraph of G1 and G2, denoted G 1 &G2, 
is a common subgraph with the highest possible cardinality: 

IG I= IG I = IG, G21 = max (9) 

A common supergraph of two graphs G 1 and G2 consists of a graph 
(called the supergraph and denoted by GI v G2) such that it contains two 
subgraphs which are simultaneously isomorphic to the graphs G~ and G2, 

t ~ t respectively, G1 ~ G1 --- G and G= ,,, G2 --- (3. A minimal common supergraph of 
G1 and G2, denoted by GIUG2, is a common supergraph with the lowest 
possible cardinality: 

IG1 u G21 = min (lO) 

We emphasize that concepts of common subgraph and supergraph may be 
simply generalized by induction for more than two graphs. Thus, for instance, 
the maximum common subgraph of a triple of graphs G~, G:, G3 will be denoted 
by G~ & G 2 o G 3 ,  and be hence isomorphic to a common subgraph G 1 A G 2 A G 3 
with highest cardinality. 

Example 1. Let us study two graphs G1 and G2 in Fig. 1. The maximum 
(minimum) common subgraph (supergraph) assigned to these graphs is dis- 
played in the second row in Fig. 1. Displayed in the third row are a common 
subgraph and supergraph that are not extremum, i.e. maximum or mini- 
mum. [] 

Now let us focus our attention on how to specify a reaction graph GR SO 
that, when applied to a molecular graph G1, it produces a new graph G2. We 
shall postulate that the cardinality of V(GR) is smaller than or equal to the 
cardinality of V(G1), i.e. IV(GR)I ~<lV(~l)l.  Since these vertex sets are, in 
general, different, we introduce a 1-1 mapping of V(GR) onto a subset 
V ( ~  1) ~--- ~"r(G 1), 

co : v ( G ~ ) - ~  17(G,). (11) 

The mapping co specifies the correspondence between vertices of the reaction 
graph GR and vertices of a subgraph of G I induced [10] by the subset I7(GI). 
In our forthcoming considerations, we shall have an inverse mapping 
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(O I) tO z ) 

1 5 

- 4 

(01N Oz) (G1U Gz) 

1 2 

2 3 4 5 / ) 7 \  

1 (01A 02 ) (G1 VG 2 ) 

Fig. 1. The common subgraphs (supergraphs) of the graphs G] and G 2 

(.O 1. ~ (G1  ) ~ V((~R) extended outside of V(61) to the whole vertex set V ( 6 1 )  , 
where co-l(v) = z for each v ~ V(G])\V(G1) and z is a "virtual" vertex, i.e. one 
that does not belong to V(GR). The resulting graph G2 formed from the 
molecular graph G] by the reaction graph GR and the mapping co is formally 
determined as an ordered triple: 

(G1, co, GR) = G2 (12) 

Its vertex set V(G2) is equal to the vertex set V(G1) ; the edge set E(G2) is 
determined through the mapping ~02 as follows: 

(/)2({/)1, V2} ) ~--- (~I({Vl, V2} ) "F (pR({(-0--1(Vl), (.0--1(/)2)}) (13) 

Formally, the process of construction of G 2 from G] will be considered a 
transformation of G~ to G2: 

G] =~ G2 (14) 

specified by a reaction graph GR and a mapping co. 
We call the transformation of Eq. (14) [or Eq. (12)] feasible if the mapping 

~02 is nonnegative (i.e. the resulting graph G2 is a molecular graph), 
~02({UI, /)2}) /> 0. Otherwise, when for a pair of vertices /)1~ I)2 ~ V(~I) we have 
q)2({vl, v2}) < 0, the reaction graph GR specified by the mapping co forms from 
the molecular graph G1 a new graph ~2  which is not molecular. The edge set 
E(G2) of the molecular graph G2 produced by a feasible transformation 
(G], co, GR) is determined by: 

E(G2) = {{vl, v2}; q~z({Vl, Vz}) > 0} (15) 
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(OR) 

2 (o;~l (o;1 
/ 

Fig. 2. Applicatiofi~of the reaction graph GR, specified by two different mappings co~ and o9~ in 
example 2, onto the'molecular graph G 1 in Fig. 1 provides the molecular graphs G~ and G~ given in 
the second row 

Example 2. Let us study the molecular graph (~1 in Fig. 1 and let the reaction 
graph GR be specified by the graph shown in the first row in Fig. 2. The 
following two mappings will be used for the specification of GR: 

o9',(2) = 1', ~o{(3) =2 ' ,  ~o{(4) =3' ,  ~o{(5) =4 '  

0~(2) = 1', ¢o';(3) = 4', o91'(4 ) = 3', co'~'(5) = 2' 

The resulting molecular graphs are displayed in the second row in Fig. 2. [] 
If molecular graphs G1 and G2 are related by a feasible transformation of Eq. 

(14) and G1 belongs to the family ~q, then the produced graph G2 belongs also 
to the same family ~-pq of isomeric graphs. This property implies that the 
transformation of Eq. (14) preserves the number of vertices as well as the 
cardinality of graphs as an immediate consequence of the definition of transfor- 
mation and the property in Eq. (2) of reaction graphs. Hence, claiming that two 
molecular graphs are mutually related by a transformation we automatically 
assume that these graphs are also isomeric. 

If two molecular graphs (~ l ,G2~pq  are related by G 1 =*" G2,  i.e. 
(G1, CO1, GR) = G2, then the inverse reaction graph G~ performs a retrotransfor- 
mation G2 =~ G1, where (G2, ~2, GR) ----- G~. This property immediately follows 
from Eq. (2) required for reaction graphs. If the transformation ~1 ~ G2 is 
realized by a reaction graph GR (and mapping o9~), then the retrotransformation 
G 2 ~ G 1 is carried out by an inverse reaction graph GR (and mapping 0~2). 

Finally, let us introduce a few new concepts and notions which will be 
frequently used in our forthcoming considerations. Let ~ be a nonempty set 
composed of the so-called prototype reaction graphs which are pairwise noniso- 
morphic. Moreover, if G R belongs to ~,  then also a reaction graph G~, 
isomorphic to GR, belongs to ~.  This requirement means that the set ~¢ is 
formed either of couples of symmetric reaction graphs or single selfsymmetric 
reaction graphs. It ensures that if transformation G1 =~ G2 is carried out by 
reaction graph GR ~ ~,  then retrotransformation G2 =~ G1 is also feasible and 
carried out by a reaction graph from ~,  in particular, by a reaction graph 
isomorphic to the inverse reaction graph GR e ~ .  A graph Gpq(~), called the 
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graph of distances, is determined in such a way that its vertex set is identified 
with the family ~po" Two distinct vertices (corresponding to a pair of nonisomor- 
phic molecular graph G, G '~  ~pq) are adjacent by an edge if there exists a 
reaction graph Gn ~ ~ (specified by a mapping a~) such that (G, a~, Gn) = G', 
that is, the isomeric molecular graphs G, G' may be related by the binary 
relations called transformation G =~ G" and retrotransformation G' =~ G, 
carried out by the reaction graphs Gn and Gn, respectively. 

In general, the graph of distances Gpq(~t) may be disconnected, it contains 
two or more components. For a given component, its two distinct vertices 
(corresponding to a pair of nonisomorphic molecular graphs belonging to the 
family ~pq) are connected by a path (composed of a sequence of edges). Let us 
denote by d(G, C~') the length of a minimal past between two vertices (corre- 
sponding to G, G' ~ ~pq) from the same component. This entity may be equal to 
zero iff the molecular graphs are isomorphic. The graph distance between 
molecular graphs belonging to the family ~pq is determined (with respect to the 
set ~ of prototype reaction graphs) as follows: 

f~ 
G, G'), (Graphs G and G' are from 

D(G, G') = the same component of Gpq(Yl)) (16) 
(Graphs G and G' are from 
different components of Gpq(~l)) 

We see that the concept of distance between pairs of molecular graphs is well 
determined only when these pairs belong to the same component of the distance 
graph Gpq(Yl). In the opposite case, i.e. the graphs belong to different compo- 
nents of •pq(Yt), the distance D(G, G') is formally set equal to "infinity". 

It is intriguing to formulate necessary and sufficient conditions required for 
prototype reaction graphs of ~ such that the corresponding graph of distances 
Gpq(~t) will be connected. A partial solution of this problem may be achieved in 
a form of sufficient conditions ensuring the connectivity of Gpq(~t). Let us 
consider a pair G, G' of graphs from ~u such that these graphs only differ at two 
edges, or two loops or at one edge and one loop. This means that starting from 
a maximum common subgraph G c~ G' we may form graphs which are isomor- 
phic to G and G' by adding an edge or a loop, i.e. GonG'+  {e} ~ G and 
GonG'+  {e'} ~ G'. More precisely, the graphs G and G' are related by 
IG c'I+ l = q .  

Theorem 1. If for an arbitrary pair of graphs G, G ' e  ~q restricted by 
IG c~ G' I + 1 = q a transformation G =~ G' may be decomposed into a sequence 
of elementary transformations carried out by prototype reaction graphs from ~,  
then the corresponding graph of distances Gpq(~l) is connected. [] 

Loosely speaking, the above theorem states that if an arbitrary edge/loop 
could be moved into another one by prototype reaction graphs from N, then the 
graphs of distances should be connected. This conclusion is obvious, since an 
arbitrary graph may be transformed into another one by a process which moves 
an edge/loop into other positions and also changes an edge into a loop and vice 
versa. 

Therefore, in order to avoid the above mentioned formal difficulties in our 
forthcoming considerations on different specific distances which will induce 
metrics, we shall always require that the set ~ of prototype reaction graphs is 
chosen in such a way that the corresponding graphs of distances Gpq(~) is 
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connected. Then the distance D(G, G') is a nonnegative integer, vanishing iff the 
molecular graphs G, G' are isomorphic: 

D(G,G ' )>I0  ( = 0 i f f G ~ G ' )  (17) 

Moreover, the graph distance is symmetric and the triangle inequality satisfied: 

D(G, C') = D(G', G) (18) 

D( G, G ") + D( G", G') t> D( G, G') (19) 

where the sign of equality is satisfied iff the molecular graph G" lies on a shortest 
path connecting the terminal graphs G and G' in Gpq(~). 

Theorem 2. If the set ~ of prototype reaction graphs is chosen in such a way 
that the graph of distances Gpq(~ ) is connected, then the graph distance 
D(G, G') is a metric over the family ~pq of isomeric molecular graphs, i.e. 
(~q, D) is a finite metric space. [] 

3. Graph distances 

At the end of the previous section we introduced the so-called graph distance 
between molecular graphs of the same family ~-~pq, whereby the graph distance is 
related to a set ~ composed of prototype reaction graphs. We remember that 
these prototype reaction graphs are either pairwise symmetric or as singles 
selfsymmetric. The set ~ will be always chosen in such a way that the corre- 
sponding graph of distances (~pq(~) is connected, that is it may be applied for 
definitions of graph distances, see Eq. (21). 

Theorem 3. Let ~ '  be a set of prototype reaction graphs and let it be a subset 
of a "larger" set ~ of prototype reaction graphs, ~ '  ~_ ~.  The following three 
properties are satisfied: 

(1) If the graph Gpq(~l') is connected, then the graph Gpq(~) is also 
connected. 

(2) The graph Gpq(~") is a subgraph of Gpq(~), C~pq(~") c7. (~pq(~). 
(3) If the graph distances D'(G, G') and D(G, G') are determined over the 

graphs Gpq(~') and Gpq(~), respectively, then: 

0 ~<D(G, G') < D ' ( G ,  G'). [] (20) 

Proofs of these three statements are very simple. Since ~ '  ___ ~ ,  assuming that 
Gpq(~') is connected, then Gpq(~) should be also connected. The next two 
statements are also immediate consequences of ~'___ ~.  Each pair of graphs 
G, G' that are joined in Gva(~' ) by a path must be also joined by a path with 
length shorter than or equal to a length of the former path. 

Reaction distance. The set ~ of prototype reaction graphs is chosen as: 

= ( 2 1 )  

where the reaction graphs G~ ) and G~ ) are isomorphic to the graphs denoted by 
1 and 2 in Fig. 3. We see that this set ~ is composed of one pair of mutually 
symmetric graphs, G~ ~ ~ G~). 

Theorem 4. The graph Gpq(~) is connected. [] 
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1 -1 1 -1 

(1) (2) 13) (4) 

1 -1 

1 V V  
3 (51 [61 (7) 

/ , ~  p loops 

4 (G*) 

Fig. 3. All possible reaction graphs with cardinality equal to 2. The couples 1-2 and 3-4 correspond 
to pairs of mutually symmetric reaction graphs whereas the singles 5, 6, and 7 are selfsymmetric 

Fig. 4. An illustrative example how to transform a molecular graph E l onto another molecular 
graph G2, whereby Gl, G2 e ~pq. The intermediate graph G* is composed o fp  vertices and q loops 
incident with the same vertex 

In order to prove this theorem we shall use a possibility outlined in Theorem 
2. Let us select from the family ~pq a graph G* composed of q loops incident with 
the same vertex, see Fig. 4. It is now easy to show that each graph G1 e ~pq may 
be transformed by application of a finite number of reaction operators from the 
set ~ determined by Eq. (21) onto the graph (3*. This also means that the graph 
G* may be analogously (retro-) transformed onto another graph G2 e ~pq, 
formally (see Fig. 4): 

G 1 ~ G*  =:~ G 2 . 

Hence, we have proved that between a pair of arbitrary isomeric graphs there 
exists a path with terminal vertices GI and G2 and going through the graph G*, 
that is the graph of distances (~pq(~) is connected, which was to be demonstrated. 

The distance D(G, G') with the choice of Eq. (21) will be called the reaction 
distance and will be denoted by RD(G, G'). It was initially described by Ko~a [23] 
(see also Refs. [5, 18, 22]) as a proper graph-theoretic tool for treatment of 
chemical transformations (reactions) of an educt molecular graph into a product 
molecular graph. It allows us to decompose an "overall" transformation G =~ G' 
onto a sequence of the so-called elementary transformations realized by the 
prototype reaction graph from Eq. (21): 

where the "intermediate" molecular graphs G1, G2 . . . .  , G,_ ~ e ~pq correspond 
to those vertices- graphs that form a shortest path connecting the vertices- 
graphs G and G' in the graph of distances Gpq(~). The length of sequence of Eq. 

(22) is equal to the reaction distance RD(G, G'), i.e. it is minimized from the 
standpoint of definition of RD. This is a manifestation of the well-known principle 
of minimum structural change often used by chemists when they are considering 
a mechanism (i.e. sequence of elementary chemical transformations) of an overall 
chemical transformation. 
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{1} (2) {3) 

6 5 

5 (4} 15) (6) 

Fig. 5. All molecular graphs from the family of isomeric graphs ~2,3 

Fig. 6. Graph of distances determined over the family ~2,3 and with respect to the set ~ of prototype 
reaction graphs in Eq. (21). The length of the shortest path between vertices - molecular graphs 
G, G' e ~2,3 is equal to the reaction distance RD(G, G') between them 

Example 3. Let us consider a family ~2,3 of isomeric molecular graphs, see Fig. 
5. The corresponding graph G2,3(~), where the set ~ is determined by Eq. (21), 
is displayed in Fig. 6. Then the reaction distances between the graphs from ~2,3 
are listed in the form of the following matrix 

I i  1 2 3 3 2" ~ 0 1 2 2  1 
1 0 1 1 2 

R D =  2 1 0 2 3 [] 
2 1 2 0 1 
1 2 3 1 0 

The sequence in Eq. (22) of the elementary transformations carried out by 
prototype reaction graphs from the set in Eq. (21) may be expressed recurrently 
as follows [see Eq. (12)]: 

(Gi, o,,, Gt~ ]) = G;+I,  (23) 

for i = 0, 1, 2 . . . . .  n -  1, where co o, COl, . . . ,  COn_ 1 are mappings (see Eq. (11)) 
specifying actions of reaction graphs G~ 1, G~ 1 . . . . .  G~-11, respectively on the 
so-called predecessor molecular graphs. Applying successively the concept of 
common supergraph introduced in the previous section, we can construct a 
special type of common supergraph of graphs C0, G~ . . . .  , G, from Eq. (22) 
denoted by Go v G 1 v G2 v • • • v G n. Its construction is carried out successively 
going step-by-step from the left side to the right side in Eq. (22). We start with 
the construction of a common supergraph of Co and G~, denoted by Go v e l ,  
in such a way that we add the just created edge/loop into the graph Co. Here we 
have to distinguish between two different cases. First, the created edge/loop is 
already present in Go, then we only need to increase the multiplicity of this 
edge/loop by 1. Second, the related edge/loop does not belong to the edge set of 
Co, then its edge set is enlarged by this edge/loop and its multiplicity is put equal 
to 1. In a similar way we construct in the forthcoming step a common 
supergraph of the just constructed Go v G~ and G2, the resulting common 
supergraph will be denoted by C0 v G~ v G2. Finally, the constructed common 
supergraph Co v e l  v G2 v .. • v G, is composed of those edges/loops that were 
initially present in Co and also all created edges/loops going successively (in Eq. 
(22)) from Co to G, through intermediates G1, G2 . . . . .  G ,_  1. This means that 
the cardinality of this common supergraph is equal to the cardinality of edge set 
E(Go) (where IE(Go)I = q) plus the length of minimum path of Eq. (22), that is 
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[(30 v G1 v G2 v • • • v (3. I = q + n. Since integer n is in fact equal to the reaction 
distance between graph G and (3', we arrive at the following theorem. 

Theorem 5. The reaction distance between a pair of graphs G, (3' e ~pq is: 

R D ( ( ~ ,  G ' )  = [G O v (31 v (32 v . . .  v (3n ] - -  q, (24) 

where (30 ~ G, G1, • • •, G.  _ 1,G. ~ G'  is a sequence of  molecular graphs from a 
shortest path connecting (3 and G' in Gpq(~). [] 

This theorem represents the principal result of  this section. It demonstrates 
that the reaction distance, initially determined as a graph distance over the 
corresponding graph of  distances Gpq(~), may be alternatively determined by 
Eq. (24) with the help of  the concept of a common supergraph. Unfortunately, 
this common supergraph is determined not only by the molecular graphs for 
which the reaction distance is evaluated but also by g r a p h s -  intermediates 
which lie on a shortest path connecting the graphs G and G' in Gpq(~). 

Example 4. Let us consider a pair of  graphs (3 and G '  belonging to the family 
~6,5, see Fig. 7. Their transformation (3 =~ (3' may be decomposed in a 
minimum sequence of  six elementary tranformation determined by the reaction 
graphs from Eq. (21), i.e. their reaction distance is RD((3, G') = 6. The corre- 
sponding common supergraphs of  all seven graphs (one educt graph (3 ~ (30, 
five intermediate graphs G1, (32, (33, (34, (35, and one product graph (36 ~ (3') 
are displayed in the fourth row in Fig. 7. The cardinality of  the common 
supergraph G 0 v . . . v  (36 is equal to 11. According to Eq. (25) the reaction 
distance is RD(G, G') = 11 - 5 = 6. [] 

2 6 20 6 

(o) (o') 

(G=G 0) (G 1 ) (02 } [G 3) [G 4 ) 

(O s) (Ge-'-- G') 

7 (60V.-. VGs) 

Fig. 7. Decomposition of the transformation G ~ G" onto a minimum sequence of six prototype 
transformations assigned to reaction graphs from the set ~/ specified by Eq. (25). The common 
supergraph G O v • -. v G 6 is displayed in the fourth row 
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Chemical distance. Chemical distance was independently determined in the 
framework of the maximum common subgraph by Johnson [19] and Bal~  et al. 
[20-22]. The set ~ is composed of all prototype reaction graphs listed in Fig. 3: 

= [(3~); 1 ~< i ~< 7} (25) 

Since the set determined by Eq. (21) is a subset of this set, then, according to 
Theorems 3 and 4, the graph of distances (3pq(~) assigned to Eq. (25) is 
connected. The distance D((3, (3") determined over the graph (3pq(~) will be 
called the chemical distance and denoted by CD((3, (3'). Following Theorem 3, 
chemical distance should be bounded from above by the reaction distance: 

0 <<. CD(G, G') ~< RD(G, G') (26) 

that is, the reaction distance represents an exact upper bound of the chemical 
distance. From the above inequality immediately follows that if RD = 1, then 
also CD = 1, formally: 

RD(G, (3') = 1 =~ CD(G, G') = 1 (27) 

Unfortunately, the implication of Eq. (27) could not be reversed; assuming that 
CD(G, G ' ) =  1, then [22] 1 ,,< RD(G, (3')~<4. This property may be straight- 
forwardly generalized for a pair of arbitrary molecular graphs from ~q, and we 
get RD(G, (3') ~< 4CD(G, (3'). Introducing this inequality into Eq. (26) we arrive 
at the very important relation between reaction and chemical distance [ 18]: 

CD(G, G') ~< RD(G, G') ~< 4CD((3, G') (28) 

Example 5. The graph of distances (32,3(~) determined with respect to the set of 
Eq. (25) is displayed in Fig. 8. We see that the graph of distances studied in 
Example 3 (see Fig. 6) is a subgraph of the present graph of distances (cf. 
Theorem 3). This property immediately implies the inequality of Eq. (26). The 
matrix of chemical distances between graphs from ~2.3 is: [i1233il  o1221 

1 0 1 1 
C D =  2 1 0 1 " 

2 1 1 0 
1 1 2 1 

[] 

Example 6. On the first sight it may seem that the right side inequality of Eq. 
(28) considerably overestimates the upper bound of the reaction distance. Let us 
study two isomeric graphs G1 and G2 in Fig. 9. Their distances are 
RD(Gt, G2) = 4 and CD(G~, G2) = 1, that is the term 4CD(G1, G2) represents 
the exact upper bound of RD((31, G2). [] 

Theorem 6. The chemical distance CD(G, G') between graphs from ~q is 
determined by the following two equivalent ways, namely: 

~q-IG~G'I 
CD(G, G') = ~[G u G I - q" [] (29) 

The proof of this theorem may be done in a similar way as the proof of 
Theorem 5. Let us consider a pair of graphs G, G' e ~q and let a shortest path 
in (~pq(~) connecting these vertices be equal to n, i.e. CD(G, (3 ' )= n > 0. It 
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2 3 4. 

W 
6 5 

8 

[0 

9 (Ol )  (02)  

Fig. 8, Graph of distances determined over the family "~2,3 and with respect to the set ~ of 
prototype reaction graphs of Eq. (25). The length of the shortest path between vertices - molecular 
graphs G, G' e ~e,3 is equal to the chemical distance CD(G, G') between them 

Fig. 9. Two isomeric molecular graphs with chemical distance CD(G~, G2) = 1 and reaction distance 
RD(G 1, G2) = 4 

means that there exists a sequence (Eq. (22)) of isomeric molecular graphs 
composed of  (n - 1) intermediate graphs G1, Q ,  • • •, Gn_ ~. Similarly as for the 
reaction distance, these graphs are mutually recurrently related by transforma- 
tion Eq. (23). The corresponding common supergraph of Go, G1 . . . .  , Gn_ 1, G,  
is constructed by making use of the same procedure as that used in the previous 
subsection for reaction distance [see the comment below Eq. (23)]: 

CD(G, G') = IG0 v G, v G2 v . .  v G n l - q  (30) 

Since the set ~ is composed of all reaction graphs in Fig. 3, each elementary 
transformation corresponds to a process of  creation of  an edge/loop which is 
also appearing in the product graph G'. This means that the common 
supergraph Go v G~ v G 2 V . . .  V ~'~n should be isomorphic to a minimum com- 
mon supergraph G w G', and consequently: 

c o ( G ,  G') = IG u G' I - -q  (31) 

Applying simple set-theoretical considerations we get that the maximum com- 
mon subgraph and the minimum common supergraph are related by: 

IG u G'I + [G n G'I = IG[ + IG'I = 2q (32) 
Introducing Eq. (32) into Eq. (31) we arrive at the first row of Eq. (29) whereas 
Eq. (31) is equal to the second row of Eq. (29). 

Theorem 6 determines the chemical distance between pairs of  isomeric 
molecular graphs by making use of  the concept of  their maximum (minimum) 
common subgraphs (supergraphs). It means that this distance depends explicitly 
only on the graphs for which the distance is evaluated and, in constrast to the 
reaction distance, it does not depend on intermediate graphs from the minimum 
path in the graph Gpq(,.~). Therefore, Eq. (29) may be used for an evaluation of  
chemical distance without the necessity to know the graph of distances Gpq(,~l) 
[25, 26]. 

Example 7. In order to illustrate the above proof  of Theorem 6 we shall study 
the pair of graphs G, G'  e ~q,  see Fig. 10. The transformation G => G' may be 
decomposed into a minimum sequence of  three elementary transformations, all 
of  which are determined by reaction graphs from the set of  Eq. (25), see Fig. 10. 
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• / H  2 

3e 1 3 

(O) (O') 

C ~ I  30 

(0) 

2 2 2 

(0~) (02) (0') 

IO 

2 

(ouo ' )  

Fig. 10. Illustrative example of 
transformation of molecular graphs 
decomposed into a sequence of 
elementary transformations from the 
set of Eq. (25). The minimum 
common supergraph of G and G' is 
displayed in the third row 

We see that intermediate graphs G1 and G2 contain newly created edges which 
appear in the product graph G'. The common supergraph displayed in the third 
row in Fig. 10 is isomorphic to the minimum common supergraph G u G'. Then, 
according to Eq. (29), the chemical distance between G and G' is determined by 
CD(G, G') = 6 - 3 = 3. [] 

4. Discussion 

The reaction and chemical distances between molecular graphs taken from the 
same family of isomeric graphs are entities well suited to "measure" similarity or 
dissimilarity between them. These distances may be introduced in two quite 
different manners. In the first, the distances are determined as the length of  
minimum path which connects the graphs in the graph of distances. In the 
second, the distances are determined by resorting to the concept of  common 
supergraph. Both these approaches are equivalent and offer simple, chemically 
relevant interpretation of  distances. For  instance, the reaction distance deter- 
mines the minimum number of elementary reaction a c t s -  associations and 
dissociat ions-  that are necessary for transformation of an educt molecular 
graph onto a product molecular graph. It reflects Ingold's idea of  a push-pull 
electron flow through a sequence of  created and/or annihilated bonds. This 
combined with the famous principle of  minimum structural change has success- 
fully been used in organic chemistry for more than 100 years [9]. 

Chemical distance has not such a simple mechanistic interpretation. It reflects 
the principle o f  minimum structural change without referring to how the given 
transformation G =~ G' is mechanistically realized. Its increasing value indicates 
that molecular graphs G and G' are more disimilar. In such a case more 
prototype reaction graphs must be applied to carry out the transformation 
G =~ G'. 
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As a byproduc t  o f  our  graph-theoretical  considerations new possibilities 
appear  for  the determinat ion o f  a distance between molecular  graphs. This is 
based on a choice o f  the set 2 ,  its determinat ion according to Eqs. (21) and (25) 
induces the reaction and chemical distances, respectively. Of  course, there exists 
other  interesting possibilities to determine the set ~ such that  the corresponding 
graph of  distances Gpq(~) is connected. 

For  instance, the set ~ determined by Eq. (21) may  be enlarged by further  
reaction graphs in Fig. 3. The induced distance over the graph  Gpq(~) may  be 
interpreted as an intermediate metric bounded  by reaction and chemical dis- 
tances. Similarly, if the set ~ is composed  of  the pro to type  reaction graphs 3 and 
4 shown in Fig. 3, then, according to Theorem 1, the graph  Gpq(~) is connected 
and it induces a distance between molecular  graphs. Unfor tunately ,  these dis- 
tances are o f  more  graph-theoretical  than chemical meaning, they represent an 
interesting extension o f  the original chemical idea to the problem o f  graph 
distances. 
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